View Single Post
  #106  
Old June 11th, 2023, 05:12 PM
James James is offline
-= Extreme Supporter =-
 
Join Date: Jun 2013
Location: Greer, SC
Truck: 1964 GMC 1500 2wd
Age: 69
Posts: 432
Rep Power: 200
James will become famous soon enoughJames will become famous soon enoughJames will become famous soon enough
Default Re: '65 GMC 1500 project. From the Netherlands

Quote:
The stock ones are lousy on seat pressure, maybe 50 pounds, maybe shim them for improved pressure or change them for another spring.
They are good are break-in springs, though.
Personally I would installed bronze valve guide sleeves first. Then I will be using valve springs from Comp Cams #972. I will also need to use spring seat cups Comp Cams #4704, guide will need to be machine to allow installation. While you are getting it machine I would also get machine for positive valve stem seals. And to top it off with Comp Cams retainers #743. The springs comes extremely close to the stock seat pressure base on the maintenance manual specs, I also double check a set just to be sure. The springs are good for .700" before coil bind.

Here is something I found on Motor Trend web site:


To view some links or images in this forum your post count must be 1 or greater. You currently have 0 posts. Maybe you should introduce yourself with a new topic?



Lobe Displacement Angle (LDA):
Although the installer can advance and retard the lobe centerlines, the displacement angle between the centerlines is ground into the cam at the time of manufacture and cannot be changed by the end-user. Narrow LDAs tend to increase midrange torque and result in faster revving engines, while wide LDAs result in wider power bands and more peak power at the price of somewhat lazier initial response.
A street engine with a wide LDA has higher vacuum and a smoother idle. On the street, LDA should be tailored to the induction system in use. According to Comp Cams, typical carbureted, dual-plane manifold applications like 110-112 LDAs, while fuel-injected combos want slightly wider 112- to 114-degree LDAs. Fuel-injection doesn’t require the signal during overlap that carburetors need to provide correct fuel atomization, and most computer controllers require the additional idle vacuum that results from decreased overlap.
Bracket racers with higher stall-speed converters, high compression, single-plane intakes, and large carbs usually want 106-110-degree LDAs.
Engines equipped with blowers or turbos, or used primarily with nitrous oxide, typically work best with wider 110- to 116-degree separations. Race engine speeds have increased over the years causing a corresponding upward creep in LDA and duration

Duration:
Duration has a marked effect on a cam’s power band and driveability. Higher durations increase the top-end at the expense of the low-end. A cam’s “advertised duration” has been a popular sales tool, but to compare two different cams using these numbers is dicey because there’s no set tappet rise for measuring advertised duration. Measuring duration at 0.050-inch tappet lift has become standard with most high-performance cams. Most engine builders feel that 0.050 duration is closely related to the rpm range where the engine makes its best power. Typical daily driven, under-10.25:1-compression ratio street machines with standard-size carbs, aftermarket intakes, headers, and recurved ignitions, like cams with 0.050-inch durations in the 215- to 230-degree range if using a hydraulic grind, or 230- to 240 degrees with a solid.
When comparing two different cams, if both profiles rate the advertised duration at the same lift, the cam with the shorter advertised duration in comparison to the 0.050 duration has more aggressive ramp. Providing it maintains stable valve motion, the aggressive profile yields better vacuum, increased responsiveness, a broader torque range, and other driveability improvements because it effectively has the opening and closing points of a smaller cam combined with the area under the lift curve of a larger cam.
Engines with significant airflow or compression restrictions like aggressive profiles. This is due to the increased signal that gets more of the charge through the restriction and/or the decreased seat timing that results in earlier intake closing and more cylinder pressure.

Big cams with more duration and overlap allow octane-limited engines to run higher compression without detonating in the low- to mid-range. Conversely, running too big a cam with too low a compression ratio leads to sluggish response below 3,000 rpm. Follow the cam grinder’s recommendations on proper cam profile-to-compression ratio match-up.

Lift:
Another method of improving cam performance is to increase the amount of lobe lift. Designing a cam profile with more lift results in increased duration in the high-lift regions where cylinder heads flow the most air. Short duration cams with relatively high valve lift can provide excellent responsiveness, great torque, and good power. But high lift cams are less dependable. You need the right valvesprings to handle the increased lift, and the heads must be set up to accommodate the extra lift. There are a few examples where increased lift won’t improve performance due to decreased velocity through the port; these typically occur in the race engine world (0.650-1.00-inch valve lift). Some late model engines with restrictive throttle-body, intake, cylinder head runner, and exhaust flow simply can’t flow enough air to support higher lift.
Besides grinding a lobe with more lift, you can increase the lift of an existing cam profile by going to a higher rocker arm ratio. For example, small-block Chevys where the cylinder head runners are not maxed out may benefit from moving up from the stock 1.5:1 ratio to 1.6:1 rockers. But going up more than one tenth in rocker ratio can lead to trouble; there’s a limit to how fast you can move and accelerate the valve before the valvespring can no longer control the system. If a profile was a good design with 1.6:1 rockers, it’ll probably be unstable with 1.8:1 rockers. The correct solution is to design the profile from the ground up for use with high-ratio rocker arms.

Hope this is not too much information ("Information Overload"). I just want you to make the best choice with the information you know.

Good luck.
Reply With Quote